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Urban Travel Demand Calibration

➢ Transportation agencies and stakeholders worldwide commonly develop traffic 

simulation models of their road networks and use them to inform a variety of 

planning and operational decisions.

➢ Calibrating the input parameters of these simulators is an important offline 

optimization problem:
○ High simulation costs;

○ Specific sample from limited observed traffic information;

○ Evaluate counterfactual (what-if) scenarios

○ …
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Motivation - Origin-Destination (OD) Calibration

➢ (Static) OD calibration aims to identify an OD 

matrix from a hypothesized distribution, 

resulting in simulated metrics that accurately 

reflect field-observed traffic conditions:
○ high-dimensionality, 

○ non-convexity, 

○ underdetermined,

○ simulation-based nature

○ …
➢ Explore the Deep Generative Models.
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Transportation Science
(Parameter tuning process)

Machine Learning
(Model fitting process)

Figure 1. Topology of Munich network 
with major region Traffic zones



Motivation - Gray-box / Hybrid modeling

➢ Gray-box: data-driven + theory-driven

➢ Deep Generative Models: 

○ E.g., Variational Autoencoders (VAEs); Generative Adversarial Networks (GANs); Diffusion Models…

○ Extracting complex relationships via data-driven method;

○ Generating samples from the learned latent distribution.

➢ Physics knowledge: 

○ Contributing to data efficiency;

○ Constraining the generative model's latent space;

○ Carrying out counterfactually robust transportation analysis.

○ Transportation domain: analytic equations[1] such as the continuity equations. 
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[1] Osorio, Carolina. "Dynamic origin-destination matrix calibration for large-scale network simulators." Transportation 
Research Part C: Emerging Technologies 98 (2019): 186-206.
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OD Calibration Problem Formulation from Bayesian Perspective

➢ Instead of obtaining a single calibrated point estimate d for an observed traffic 

flow y, we now seek a posterior p(d|y). 

➢ Samples d~p(d|y) are OD matrices likely to have yielded the observed traffic 

flow under the likelihood pS(y|d)  defined by the traffic simulator S.
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OD Calibration Problem Formulation from Bayesian Perspective

➢  The posterior can be given in the standard setup for Bayesian inference:

p(d|dprior)  defines the prior distribution, conditional on the provided noisy OD dprior.

➢ For the likelihood, we view the traffic simulator S as implicitly defining p(y|d):

i.e. marginalizing over the possible trajectories z in the simulator's latent space, 

where u1, u2 are vectors of simulators.
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Conditional VAE
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Controllable Physics-Aware Variational Autoencoders
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Conditional variational autoencoder (CVAE)

➢ Encoder: learn the hidden representation of given data and the distribution of                    

1                .            

➢ Decoder: decode the hidden representation to input space and captures the 

distribution                    ;
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Control-VAE

➢ Traffic flows and OD pairs are under the same 

physics mechanisms but have different modalities

➢ Cross-attention Fusion:  traffic flows as keys and 

values in a cross-attention mechanism
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Physics analytical model

➢ Linear approximation of a simulator on link i [1] based on the travel behavior:

R(i) denotes the set of routes that travel through link i. d(r) denotes the OD pair of route r and P(r) denotes the 

probability of choosing route r.

➢ P(r) is a multinomial logit model with a utility function that depends on the route's 

travel time tr[1]:

tj denotes the travel time of route j, θ is a travel time scalar parameter. 
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[1] Arora, Neha, et al. "An efficient simulation-based travel demand calibration algorithm for large-scale metropolitan traffic models." 
[2] Osorio, Carolina. "High-dimensional offline origin-destination (OD) demand calibration for stochastic traffic simulators of 
large-scale road networks." Transportation Research Part B: Methodological 124 (2019): 18-43.



Physics analytical model

➢ P(r) is a multinomial logit model with a utility function that depends on the 

route's travel time tr[1]:

tj denotes the travel time of route j, θ is a travel time scalar parameter. 

➢ Controllable Physics Information:
○ balance between physics-knowledge and simulation information:
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[1] Osorio, Carolina. "High-dimensional offline origin-destination (OD) demand calibration for stochastic traffic simulators of 
large-scale road networks." Transportation Research Part B: Methodological 124 (2019): 18-43.



Controllable Physics Information

➢ Balance between physics-knowledge and simulation information:
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Training Objective of Control-VAE

➢ Conventional CVAE variational lower bound[1]:

➢ Regularizer aligning the physics information with simulator’s behavior:

➢ Total loss:
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[1] Sohn, Kihyuk, Honglak Lee, and Xinchen Yan. "Learning structured output representation using deep conditional generative models." 
Advances in neural information processing systems 28 (2015).
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Experiments Setting

➢ High dimensional Munich network[1]:
○ 5329 origin-destination (OD) pairs;

○ 507 detector locations;

○ 5:00 am -10:00 am;

○ Covid-19 dataset      , p:  reduction; q: randomization

■ Set I: p=0.7, q=0.15;
■ Set II: p=0.7, q=0.3.

➢ Simulator:
○ Simulation of Urban MObility (SUMO);

○ Other traffic simulators …
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[1] Qurashi, Moeid, et al. "Dynamic demand estimation on large scale networks using Principal Component Analysis: The case of non-existent 
or irrelevant historical estimates." Transportation Research Part C: Emerging Technologies 136 (2022): 103504

Figure 5: Overview of Munich Traffic Network



Experiments Results - Comparison to SOTA Methods

➢ The higher calibration quality of the data-driven approach for high-dimensional 

problems than traditional state-of-the-art methods (SPSA, PC-SPSA) .
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Experiments Results - Comparison to Neural Baselines

➢ Original: RMSE between the traffic flow generated by the noised OD 
demand and the real traffic flow. 
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Experiments Results - Comparison to Neural Baselines

➢ Control VAE vs. others: demonstrate it can control the interaction of 

assistance between physics-informed and data-driven machine learning.
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Experiments Results - Comparison to Neural Baselines

➢ CVAE-catt: Cross-attention using simulation information;
➢ CVAE-phy: Cross-attention using analytic information.

○ Further improvement for efficiency.
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Qualitative Evaluations - Convergence speed

➢ SPSA and PC-SPSA can only be 
serially iterated,  while generative 
neural network-based methods can 
collect data parallelly. 

➢ The generative neural 
network-based approach uses fewer 
samples to achieve the desired 
performance, than both  SPSA and 
PC-SPSA, where people generally 
care about the best result across all 
current iterations.
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Figure 6: The converge curve based on the 
count of simulator running on M89, Set I.



Qualitative Evaluations - OD Distribution
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Figure 7: Calibration Distribution Results on OD demand. The blue cluster is the prior distribution of input OD 
and the red cluster is the calibrated OD distribution condition on observed traffic counts. The green dot refers 
to the real OD that we aim to identify.



Qualitative Evaluations - OD Distribution

➢ The effectiveness of our 
model on large-scale 
datasets to assign high 
probability to the true OD 
solution;

➢ Our proposed model  
assigns some probability 
to other possible 
solutions, not just the 
single most likely one.
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Qualitative Evaluations - Traffic Flow Calibration

➢ The proposed method identifies ODs that yield an excellent fit to the real data 
(even for the morning peak period of 8:00 am-9:00 am).

➢ This excellent fit holds for all detector locations.
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Figure 8: Calibration Results on Traffic Counts.



Thank you!
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